突触是生物神经系统的重要组成部分.忆阻器因具备连续可调的非线性电导,与连接强度可连续调节的生物突触极为相似,因此在构建人工突触及类脑系统方面引起了广泛研究.本文制备了Cu/MXene/SiO2/W结构的忆阻器,基于该器件的电学特性、尤其是电导的连续可调特性,构建人工突触单元并设计了神经形态电路.在该电路中,通过施加连续的电压脉冲,对人工突触单元进行训练,成功模仿实现了经典条件反射行为.这一工作将对未来基于忆阻器构建大规模神经形态系统以进行类脑智能运算具有重要的意义.
关键词:忆阻器,人工突触,条件反射,神经形态电路
1引 言
随着冯·诺依曼瓶颈渐显,传统计算机将无法满足大数据时代信息处理的需求,而与之相对的类脑计算受到研究人员越来越多的关注[1,2].人脑内部具有1011数量级的神经元,通过之间103—104倍数量的突触连接构成了一个复杂的神经网络[3−5].不同于现今的电子计算机,人脑可以基于海量的神经元和突触以并行、分布式的方式处理信息,其中突触连接强度的改变,被认为是人脑学习和记忆的基础[6−8].
受大脑的启发,人工神经网络的出现在一定程度上成功实现了大量数据的并行处理[9,10].其中在硬件实现方面,基于互补金属氧化物半导体的电子突触构建的人工神经网络至少需要10个晶体管才能实现一个生物突触的功能,因此进行任务处理时,和生物神经系统相比,在速度、能耗、电路面积以及资源利用率等方面存在着明显的弱点[11−13].因此,构建低功耗、高集成度的电子突触,搭建神经形态系统成为实现类脑智能的关键.
忆阻器是一种具有模拟渐变式记忆功能的双端非线性器件[14,15].其阻态的变化受到内部金属离子或氧空位迁移的调控,其调节机制与突触权重受神经递质刺激后产生的调节过程极为类似[16−18].正是由于这种物理机理上的相似性以及器件的易于集成、低功耗、尺寸小等特性,忆阻器成为构建人工突触的极佳选择[19,20].然而目前的研究大多数集中在利用不同结构和材料的器件产生忆阻行为以模拟生物突触可塑性的阶段[21,22],对于如何利用忆阻器实现神经形态系统级的功能尚缺少研究报道.
本文为实现电路对刺激信号的及时响应,选择二维材料MXene作为忆阻器插入层.与其他二维材料相比,MXene具有优异的机械性能、较大的比表面积[23,24],基于MXene的忆阻器能在更短时长的训练信号下改变忆阻器导态[25−27].首先,研究了Cu/MXene/SiO2/W忆阻器的电学特性;然后,基于该器件的电学特性,以分段线性窗函数结合惠普的氧化物忆阻器模型[28],使用VerilogA语言对该忆阻器进行建模;随后,基于该器件模型构建了人工突触单元并设计了权值差分电路.在电路工作过程中,分别采用正弦电压信号以及脉冲电压信号对突触权值进行测试和反馈训练,最后实现了经典条件反射行为[29].这一工作对未来构造以忆阻器为基础单元的大规模神经形态电路和智能运算系统,具有十分重要的意义.
2器件介绍
如图1(a)所示,双端Cu/MXene/SiO2/W忆阻器以厚度100nm的活性金属Cu、90nm的金属W分别作为顶电极和底电极.在两个电极之间,以旋涂法制备的二维材料MXene以及磁控溅射制备的SiO2为阻变层[30].器件上表面在金相显微镜下如图1(b)所示,可以清晰地看到顶部的金属电极(直径约150µm).MXene材料以团簇状堆积,在原子间电势作用下在团簇状结构内部产生强电场.图1(c)为二维材料MXene的扫描电镜图像,可以清晰地看到MXene的二维层状结构.MXene的二维层状结构总体呈团簇状,具有极小曲率,在电极电压作用下能产生较大电场.在施加电压时可以在一定程度引导导电细丝的生长,提高导电通道产生的规律性,进而有望提高忆阻器的电学特性的稳定性.图1(d)为该器件的工作机理示意图.当对Cu电极施加正电压,W电极接地时,顶电极的Cu发生氧化反应生成Cu2+,Cu2+在定向电场作用下通过阻变层到达底电极,并且在底电极与附近的电子结合还原生成Cu原子,随着底电极附近Cu原子聚集并向顶电极延伸,忆阻器逐渐由初始高阻态(highresistancestate,HRS)转变到低阻态(lowresistancestate,LRS).忆阻器的电阻状态受到内部Cu2+在电场作用下的定向移动而被连续调节[31],这与图1(e)中生物突触连接强度在神经递质移动的影响下发生的权重改变极为相似.
3测试与仿真结果
经典条件反射又称巴普洛夫反射,其中最著名的实验为巴普洛夫的狗的唾液条件反射.实验第一阶段,狗看到食物本能的发生流涎反应,属于无条件反射行为,此时食物为非条件刺激(unconditionalstimulus,US),流涎的行为为非条件反应(unconditionalreaction,UR);实验第二阶段,当没有经过训练,单独出现铃声时,狗并不会流涎,此时铃声为中性刺激(neuralstimulus,NS);实验第三阶段,在发出铃声的同时提供食物训练,狗出现流涎反应;实验第四阶段,单独发出铃声,狗经过第三阶段的训练学习后出现流涎反应,此时流涎属于条件反应(conditionalreaction,CR),铃声由NS转变为条件刺激(conditionalstimulus,CS).f(x)
为了构造基于忆阻器的神经形态电路,实现经典条件反射.首先我们用惠普模型对实验中忆阻器伏安特性进行了拟合,使用硬件描述语言VerilogA针对忆阻器电学特性对本文中新型二维材料忆阻器进行建模[32,33].图2(a)所示为惠普研究团队提出的忆阻器线性漂移模型,该模型虽能较好地复现忆阻器的连续导态特性,但在纳米尺度下,小电压产生的大电场将会进一步在界面附近产生空位的非线性漂移[34],无法再使用线性漂移模型.因此,我们通过增加以下形式的分段线性窗函数解决该边界问题[35]:
在应用过程中,分段线性窗函数表现出其在LRS界限,中间区域和HRS界限处的连续可微分性.它显示了控制参数p的较低值处的非线性行为和较高值处的线性行为.从物理学的角度来看,窗函数降低了边界附近的氧空位速度,最终导致非线性行为.
建模完成后通过调整模型的参数对实验过程中测试到的I-V特性曲线进行拟合,模型主要参数在表1列出.拟合的结果如图2(b)所示,可以看出,模型得到的仿真数据与器件的测试数据匹配度较高,因此该模型能够较大程度模拟忆阻器特性.
在此器件模型的基础上,我们利用VerilogA硬件描述语言编写VHDL模块,搭建如图3所示神经形态电路.不同于传统忆阻器权值电路[36],本电路引入电阻Ra,Rb分别与忆阻器Ma,Mb所在支路并联,以实现忆阻单元的权重差分,增加权值丰富度.信号模块(signalmodule)连接的通道a与通道b是否有正弦信号分别对应“铃声”事件与“给肉”事件是否发生;训练模块(trainmodule)连接信号模块的两路输出端口,待检测到“铃铛”与“给肉”事件同时发生,训练模块输出方波训练信号,实现对忆阻器权重单元的权值更新.
4结 论
制备了基于新型二维材料MXene的忆阻器,并测试得到该忆阻器的电学特性.为探索该器件模拟生物条件反射行为的可行性,基于忆阻器惠普模型和分段线性窗函数,对该器件进行建模.随后利用该模型构建人工突触单元并搭建了神经形态电路.该电路可以实现类似于“巴普洛夫的狗”的经典条件反射行为:通过对基于忆阻器的突触单元施加正弦信号以及方波信号分别进行权重测试和训练,实现了该电路从“无条件刺激(US)产生无条件反应(UR)”到“条件刺激(CS)产生条件响应(CR)”的转变.这一工作将为未来通过忆阻器搭建大型神经形态系统,实现类脑计算提供有效的指导作用。
新型忆阻器神经形态电路的设计及其在条件反射行为中的应用相关期刊推荐:《物理学报》刊登物理学科各领域中原创性成果的前沿研究综述、研究快讯及研究论文。该刊以论文水平高、创新性强,发表速度快的特点,受到国内外物理学工作者的高度重视,被国际著名的SCI等17种核心检索系统收录。
转载请注明来自:http://www.lunwencheng.com/lunwen/dzi/16587.html