为降低水的硬度,以一定粒径的细砂为填料,构建新型造粒反应器软化高硬度水。反应器在中温(20 ℃)条件下运行,通过改变pH值、填料粒径、水力条件、反应时间检测填料中碳酸钙的含量,考察反应器性能。本篇建筑论文试验结果表明,控制原水的pH值大于12、砂石填料粒径为0.2~0.5 mm、原水进水流量为10~35 mL/s,反应器的运行效果达到最佳。随着反应器运行时间的延长,细砂填料表面附着的碳酸钙晶体逐渐增多,运行15 d左右填料表面所附着的碳酸钙晶体达到饱和,将沉下的填料取出,更换成新的填料。反应器对原水硬度的去除率为58%~67%,出水水质良好。
推荐期刊:《建筑经济》创刊于1980年,荣获“建设部优秀期刊”奖。30多年来,秉承推进国家建筑经济学科发展与促进同业理论交流之使命,坚持把“严谨”、“规范”、“理论兴刊”作为办刊方针。经过30多年的发展,目前已成为我国建筑业经济与管理同类期刊中理论水准最高、行业影响力最大、执业声誉倍受尊敬、同业普遍认同的“行业理论旗帜”。
关键词:造粒反应器;硬度;砂石填料;吸附
硬度作为一项重要的水质指标在饮用水中受到广泛关注。《生活饮用水卫生标准》(GB 5749—2006)规定,总硬度(以CaCO3计)限值为450 mg/L。一般来说钙离子和镁离子是产生硬度的主要原因[1]。依据水中钙、镁离子的浓度,BekriAbbes等[2]将水分为软水、轻度硬水、中度硬水和硬水,对应的钙离子质量浓度分别为0~17、17 ~60、60~120、120~180 mg/L。中国黄河流域[3]、辽河流域[4]等水体硬度偏高。针对高硬度水的处理,已提出了很多有效的软化方法,包括沉淀软化法[57]、吸附与离子交换法[811]、混凝/混凝强化除硬度技术[1215]、膜除硬度技术[16],但高效、低成本的除硬技术仍是饮用水处理研究的热点。笔者依据反应器水动力学,结合填料与水体化学反应动力学原理,研发针对高硬度水处理的造粒反应器,研究造粒反应器对高硬度水的处理效能,阐述其去除原理,以期为高硬度水处理提供科学依据。
1试验装置和方法
1.1试验水质
试验原水取长江水南京段,原水中投加无水氯化钙和碳酸氢钠配制,配置后部分水质指标详见表1。
1.2试验装置
试验所采用的试验装置如图1所示。试验装置主要由反应器、计量泵、原水箱、药剂配水箱等组成。反应器为高1 m、内径5 cm的有机玻璃圆柱筒,反应器下部分别有一个进水口、一个进药口和一个填料更换口,上部有一个出水口,反应期内装有15 cm高的细砂填料。
试验原水和药剂分别通过计量泵注入造粒反应器底部,在反应器内混合,调节进水流量以控制反应器内一定的流速,从反应器上部出水。细砂填料在水流的冲击下形成流化床状态。随着反应器的运行,填料表面不断吸附反应中形成的碳酸钙,填料的重量逐渐增加,流化床状态的平衡被打破,砂石填料渐渐沉在反应器底部,此时,砂石填料失效,将失效的填料取出,替换成新填料,以保证反应器高效运行。
用pH计测定原水的pH值;用减量法测定砂石填料对碳酸钙晶体的吸附量;用扫描电镜测定砂石填料的表观形态,并用X射线能谱分析得出表面元素的含量。
2结果与讨论
2.1pH值对碳酸钙颗粒形成的影响
混合液中能够生成碳酸钙沉淀取决于CO2-3离子的多少,当混合液中存在足够多的CO2-3时,原水中的钙离子与之反应可以生成碳酸钙沉淀。而水中碳酸体系可以用以下的反应和平衡常数来表示。根据K1及K2的值,就可以制作以pH为主要变量的H2CO3 - HCO-3-CO2-3体系形态分布图,如图2所示。
由图2可知,溶液中各种碳酸化合物占总浓度的百分率随pH值的改变而变化。当 pH10时,HCO-3迅速减少;当pH>12时,水中几乎只存在CO2-3一种形态的离子。因此,在试验中,需要控制pH>12,此时混合液中的碳酸化合物主要以CO2-3的形态存在,原水中的Ca2+与 CO2-3反应生成CaCO3沉淀。
以NaOH作为软化药剂,通过控制NaOH溶液的浓度来调节混合液的pH值。同时,取粒径为0.2~0.5 mm的砂石填料,控制一定的进水流量,使反应器运行15 d,记录填料中碳酸钙的含量,得到如图3所示的关系曲线。
由图3可以看出,在其他条件一定时,当混合液的pH值大于12,填料中碳酸钙的含量达到最高值,这与此前的理论推测相一致。因此,在试验中,通过投加 NaOH溶液,控制反应器中混合液的pH值大于12,形成大量碳酸钙沉淀,沉淀附着于砂石填料上,从而原水中的钙离子得以去除,以达到降低原水硬度的目的。
2.2砂石填料粒径的选择
砂石填料的粒径对碳酸钙的结晶效果有着显著影响。砂石的粒径越小,则填料的比表面积越大,碳酸钙晶体与砂石表面的接触面积越大,软化反应速率更快。但如果砂石的粒径过小,砂粒会在反应器的运行过程中随水流流出反应器,使得反应器对原水的软化效果不佳。取不同粒径的砂石填料进行试验,控制一定的进水流量使填料处于流化床状态,反应器连续运行15 d,分别测定砂石填料中碳酸钙的含量,碳酸钙含量砂石粒径曲线图见图4。
由图4可以看出,当进水流量和反应器运行时间一定时,砂石粒径为0.2~0.5 mm时,碳酸钙沉淀在填料上的附着量较多,可以达到去除水中更多硬度的目的。因此,试验中确定砂石填料的粒径为0.2~05 mm。
2.3水力条件的构建
造粒反应器和过滤池的反冲水力特性是相同的,水流从反应器的底部进入,自下向上流动,由于受到水流冲击,砂石填料层发生膨胀并处于流化床状态。参考滤池反冲洗过程的水力特征以确定反应器的水力条件。滤池反冲洗过程中水头损失的经验计算式为
为砂石填料膨胀前的孔隙率;L为填料层膨胀前的高度,m。
试验中砂石填料粒径为0.2~0.5 mm,砂石密度为2 650 kg/m3,控制流化床的膨胀率为200%,可以得到砂石填料膨胀前的孔隙率P=042,膨胀砂层的孔隙率Pe=0.715。当d1=0.2 mm时,最小流化速度V1=0.004 812 m/s;当d2=0.5 mm时,最大流化速度V2=0.019 m/s。
试验采用的反应器为圆柱体,底面直径为5 cm,计算得到反应器的理论进水流量Q=9.45~37.31 mL/s。所以,依据理论取本反应器的原水进水流量为10~35 mL/s,使得砂石填料层处于流化床状态。
2.4反应时间对填料性质的影响
图5为造粒反应器运行不同天数时砂石填料样本的扫描电镜图。由图可以看出,随着反应器运行时间的增长,砂石填料表面附着的碳酸钙晶体越来越多,吸附的碳酸钙晶体逐渐覆盖砂石原来的表面,并且附着的晶体层上还可以继续吸附新的碳酸钙晶体。
分别取反应器运行0、3、6、9、12、15、18、21、24、27 d并干燥的砂石填料样本,用减量法测定各砂样中碳酸钙的含量,测得各个砂样中碳酸钙的含量分别为:0%、4%、12%、18%、21%、25%、28%、 31%、34%、37%。图6为反应器运行不同天数时砂石填料中CaCO3 含量和时间的关系曲线,从图6可以看出随着反应器运行时间的增长,砂石填料中碳酸钙的含量逐渐增多。
分别取反应器运行0、3、15、27 d并干燥的砂石填料样本,进行能谱分析实验,得到砂样表面各元素的含量。图7为砂样表面各元素的含量和反应时间的关系曲线。从图7可以看出,原始砂石填料表面成分主要是Si、O、Sr等3种元素,分析可得砂石表面
的主要成分为二氧化硅和微量元素。随着反应器运行时间的增长,砂石填料表面逐渐出现Ca、C两种元素,Ca、C在砂石填料表面的含量呈上升趋势,在运行时间达到15 d左右,Ca、C的含量基本趋于稳定,此时,将沉于反应器底部的填料取出,更换成新的填料,以保持反应器的除硬效能。
2.5反应器的运行效果
通过对反应器各种性质的研究,确定了当混合液pH值大于12、砂石填料粒径为0.2~0.5 mm,原水进水流量为10~35 mL/s时,填料表面所附着的碳酸钙晶体的量最多,即对原水中硬度的去除率最高。此时,测定出水水质,反应器出水水质指标见表2。
对比表2与表1,由于所投加的药剂是pH值大于12的碱液,所以反应器的出水pH值较高;由于碳酸钙的过饱和度较大,故碳酸钙会自发成核,使溶液中出现许多不能附着于砂石填料的碳酸钙晶体,这些晶体随着水流流出反应器,造成出水浊度略微增大;出水硬度与原水硬度相比明显降低,硬度的去除率为 58%~67%,出水水质良好。
3结论
造粒反应器中的砂石填料可有效吸附碳酸钙晶体,以达到降低原水硬度的目的,提高出水水质安全性,降低后续水处理单元的运行负荷。反应器中混合液的pH值、砂石填料粒径、水力条件、反应器运行时间等因素对反应器的运行效果有影响。控制混合液pH值大于12、砂石填料粒径为0.2~0.5 mm,原水进水流量为10~35 mL/s,反应器的运行效果达到最佳。随着反应器运行时间的延长,砂石填料表面对碳酸钙晶体的吸附量逐渐增长,当反应器运行15 d左右,填料表面所附着的碳酸钙晶体达到饱和,此时更换新的填料,以保证反应器高效运行。
转载请注明来自:http://www.lunwencheng.com/lunwen/jgu/9747.html