摘要:【目的】目前利用测报灯,通过灯光诱捕昆虫,并由计算机完成昆虫图像的采集、计数和识别已逐步成为害虫测报的重要方法。为了减少昆虫在采样盘上重叠造成的计数和识别误差,基于害虫图像,根据昆虫密度研究采样盘中昆虫的收集方法,从而提高采集效率和精度。【方法】根据昆虫在采样盘上姿态特点,提出基于全局对比度的图像分割方法,结合阈值迭代分割获得昆虫区域,计算昆虫比例,并控制采样盘翻转完成对昆虫的收集。【结果】通过对5种害虫的实际图像进行的试验表明:与水平集、大津法(OTSU)、阈值迭代法和基于直方图对比度的显著性检测(HC)4种算法相比,本研究方法在准确率和召回率上均提高10%以上,取得了较好的结果;同时,在分割速度上比水平集快3倍,与阈值和HC算法基本持平。【结论】基于全局对比度的分割方法简单、高效,在害虫自动测报中具有较高的实际应用价值。图7表1参17
关键词:森林保护学;害虫测报;害虫收集;图像分割;采样盘;全局对比度
现代农业和林业害虫给粮食安全带来严重威胁,每年产生巨大的经济损失[1]。准确地监测害虫数量变化,预测害虫爆发趋势,可为害虫管理行动提供可靠依据和正确管理方法[2−3]。近年来,出现了许多用于虫害测报的新型害虫诱杀设备及监测系统,这些设备配有多种传感器,可以上传数据到用户手机端,且可以定时对诱杀的害虫拍摄然后识别计数[4−5],节省了大量人力。害虫诱杀设备及监测系统进行虫害测报的重要前提是如何准确分割害虫,针对此问题,许多国内外学者对害虫分割方法进行了研究。SOLIS-SÁNCHEZ等[6]利用目标的几何形态特征(偏心率、面积等)从诱虫板上分割粉虱Aleyrodidae。NING等[7]提出交互式分割方法从复杂背景中分割害虫。吕金娜[8]提出了基于LAB颜色空间的棉花Gossypiumspp.害虫普适K聚类害虫图像分割方案,对典型棉花害虫图像进行分割。杨信廷等[9]提出了基于Prewitt、Canny边缘检测算子分割和支持向量机(SVM)的温室粉虱和蓟马Thripidae诱虫板的图像识别算法。陈树越等[10]提出改进的凹点检测和精确分割点定位的方法,实现对黏连害虫的分割。然而,上述方法大多用于单个害虫情况,对于野外诱虫装置获得图像、害虫产生轻微堆叠及颜色不一等问题还有待解决。害虫的分割效果与设备的收集功能密不可分。李芝茹等[11]采用了追踪式太阳能监测装置,在稳定供能的同时也可升降采集不同高度的害虫;张红涛等[12]、张昊辰等[13]针对捕虫诱集部分,设计了多种采集方法以及通道,来提升害虫图像质量。本研究针对害虫收集装置中的采集害虫图像分割精度的要求,根据害虫面积与采样盘面积的比例进行智能翻转,针对翻转功能需要克服的实际拍摄图像光照不均匀,阴影干扰大,及害虫种类颜色繁多等问题,提出了基于全局对比度的图像分割方法,对装置中的实际图像进行分割处理,使其满足采样盘的智能翻转要求。
1害虫收集方法
1.1基于全局对比度的害虫分割方法
害虫的智能收集通过害虫面积占比控制采样盘翻转完成,为了准确获取此比例,需要对获取的害虫图像有较高精度的分割。本研究结合基于直方图对比度的显著性检测(HC)算法与阈值迭代算法,提出了满足害虫图像精度的分割方法。整体方法流程如图1所示。
为了减少多种颜色害虫同时出现的频率,
相关期刊推荐:《浙江农林大学学报》是中国林业类和综合性农业科学类核心期刊之一,主要报道林学基础学科、森林培育学、森林经理学、经济林学、林业工程、森林保护学、林木遗传育种学、森林生物学、生态学、生物技术、园林学和园艺学等学科的学术论文、问题讨论和研究简报,适当刊登与农林相关的其他学科的稿件。设有:研究论文、研究简报、专家论坛、文献综述、问题讨论等栏目。
首先将害虫图像分成150个同等大小的区域,每个区域大小约1只害虫的面积。在分割区域操作的同时,计算颜色的出现频率,高频颜色替换低频颜色,保证算法运行速度。在此基础上通过HC算法检测图像中的浅色害虫,结合阈值迭代算法分割背景颜色。得到的图像浅色害虫轮廓清晰,并避免了阴影的影响,但图像中深色害虫均未被分割,故将此前检测出的浅色害虫图像中的像素点更新为黑色,加强深色害虫与背景颜色的对比度。再根据直方图计算显著值完成对所有目标害虫的检测。
2结果与分析
2.1图像的获取装置
图像获取的步骤分为害虫的诱杀收集和拍摄2步。害虫的诱杀通过打开图2的黑光灯引诱害虫,害虫飞至黑光灯边上的电网时,被电死掉落到下方漏斗状装置内部,然后滑落到采样盘上。摄像头在LED灯点亮后进行拍摄,采集图像大小为2592像素×1944像素。最后将拍摄的图像传送至控制系统内部进行图像处理。
2.2不同底盘颜色的分割效果分析
本研究设备为Intel(R)Core(TM)i7-8750HCPU、16G64位PC机和树莓派官方500万像素摄像头,系统和软件环境为Window10,JupyterNotebook,RaspberryPi3B+。在实际装置托盘上方20cm处使用装置内部的树莓派摄像头进行拍摄。研究样本为5种害虫在白底托盘和红底托盘上的实际图像。为了验证本研究的可靠性与有效性,共选用100张实际拍摄图像后运行算法,取平均值作为最后研究结果数据。因实际装置的硬件性能所限制,且实际装置对智能翻转的图像处理有一定的速度和精度需求,故排除与深度学习分割方法的对比。本研究选取了4种综合处理效果较好的经典算法作为比较。
使用不同算法对实际摄像头拍摄的图片白底样本进行分割。由图3可见:本研究算法与实际比率的接近程度明显高于其他算法。且在白底托盘中,本研究算法可以更好避免阴影的影响,分割出目标害虫的轮廓。比较图4和图5可知:大津算法(OTSU)出现了错误分割阴影的结果,它将较多的阴影区域分割,将会导致害虫比例严重误判。而本研究算法较好改善了该问题,至于仅剩的阴影噪声问题将通过改善拍摄条件弥补。
白底样本的分割结果(图5)进一步表明:HC算法无法识别害虫颜色与背景颜色对比度不高的害虫,而本研究算法在改进其算法后,可以较清晰地分割出这些原本分割效果不佳的害虫。
综合了白底样本采样盘易出现灯光照射以及阴影的干扰,且由于浅色害虫与白色采样盘背景对比度过于接近,更加不利于对害虫的分割,故改进装置的采样盘为红色。拍摄深色害虫与浅色害虫同时存在于采样盘上时的图像,作为红底样本,并使用不同算法对其进行分割处理。从图6和图7可见:其他算法主要完成了浅色害虫的分割,但均无法分割出深色害虫并计算害虫面积。本研究算法则完成了深浅害虫的同时分割,从图7可清晰观察到深色害虫的翅膀及触角等细节,证明本研究算法在多种颜色害虫存在时分割结果更精确可靠。2.3分割效果评价分析为了评价算法的分割图像效果优劣,本研究将采用平均分割时间、准确率和召回率对算法的分割结果进行衡量[17]。为了比较各算法的效率,将使其对每幅图像进行多次分割,然后取平均处理时间来作最终评价。准确率(P)和召回率(R)的公式如下:
3结论
本研究算法处理后得到的结果误差控制在5%以内。即使在光照不稳定和害虫种类以及姿态复杂的环境下采集的图像中,本研究算法也可以较精确避免轻微重叠和阴影的影响进行分割。在多种颜色害虫同时存在时,本研究算法也可分割出几乎接近实际害虫的轮廓。因此,本研究算法简单、高效且充分满足分割精度和速度的需求,适宜于害虫收集装置内部使用,达到对害虫比例进行准确计算的目的。——论文作者:柳懿祥1,汪杭军2,徐铁平3
转载请注明来自:http://www.lunwencheng.com/lunwen/nye/19537.html